Motherboard-Temperature and reliability-printed Circuit Board

- Mar 01, 2017-

Motherboard-Temperature and reliability-

printed Circuit Board

Temperature and reliability

A motherboard of a Vaio E series laptop (right)
A microATX motherboard with some faulty capacitors

Motherboards are generally air cooled with heat sinks often mounted on larger chips, such as the Northbridge, in modern motherboards. Insufficient or improper cooling can cause damage to the internal components of the computer, or cause it to crash. Passive cooling, or a single fan mounted on the power supply, was sufficient for many desktop computer CPU's until the late 1990s; since then, most have required CPU fans mounted on their heat sinks, due to rising clock speeds and power consumption. Most motherboards have connectors for additional case fans and integrated temperature sensors to detect motherboard and CPU temperatures and controllable fan connectors which the BIOS or operating system can use to regulate fan speed. Alternatively computers can use a water cooling system instead of many fans.

Some small form factor computers and home theater PCs designed for quiet and energy-efficient operation boast fan-less designs. This typically requires the use of a low-power CPU, as well as careful layout of the motherboard and other components to allow for heat sink placement.

A 2003 study found that some spurious computer crashes and general reliability issues, ranging from screen image distortions to I/O read/write errors, can be attributed not to software or peripheral hardware but to aging capacitors on PC motherboards. Ultimately this was shown to be the result of a faulty electrolyte formulation, an issue termed capacitor plague.

Motherboards use electrolytic capacitors to filter the DC power distributed around the board. These capacitors age at a temperature-dependent rate, as their water based electrolytes slowly evaporate. This can lead to loss of capacitance and subsequent motherboard malfunctions due to voltage instabilities. While most capacitors are rated for 2000 hours of operation at 105 °C (221 °F), their expected design life roughly doubles for every 10 °C (18 °F) below this. At 45 °C (113 °F) a lifetime of 15 years can be expected. This appears reasonable for a computer motherboard. However, many manufacturers deliver substandard capacitors, which significantly reduce life expectancy. Inadequate case cooling and elevated temperatures easily exacerbate this problem. It is possible, but time-consuming, to find and replace failed capacitors on personal computer motherboards.


Professional Manufactur Custom Design Circuit Board Electronic Pcb


Previous:Bootstrapping using the Basic input output system-PCB Next:Molex connector-printed circuit board