Electronic Symbols And Notation-circuit
Board Pcb
Electronic symbols and notation
The notation to state a resistor's value in a circuit diagram varies.
One common scheme is the letter and digit code for resistance values following IEC 60062. It avoids using a decimal separator and replaces the decimal separator with a letter loosely associated with SI prefixes corresponding with the part's resistance. For example, 8K2 as part marking code, in a circuit diagram or in a bill of materials (BOM) indicates a resistor value of 8.2 kΩ. Additional zeros imply a tighter tolerance, for example 15M0 for three significant digits. When the value can be expressed without the need for a prefix (that is, multiplicator 1), an "R" is used instead of the decimal separator. For example, 1R2 indicates 1.2 Ω, and 18R indicates 18 Ω.
Ohm's law
The behaviour of an ideal resistor is dictated by the relationship specified by Ohm's law:
Ohm's law states that the voltage (V) across a resistor is proportional to the current (I), where the constant of proportionality is the resistance (R). For example, if a 300 ohm resistor is attached across the terminals of a 12 volt battery, then a current of 12 / 300 = 0.04 amperes flows through that resistor.
Practical resistors also have some inductance and capacitance which affect the relation between voltage and current in alternating current circuits.
The ohm (symbol: Ω) is the SI unit of electrical resistance, named after Georg Simon Ohm. An ohm is equivalent to a volt per ampere. Since resistors are specified and manufactured over a very large range of values, the derived units of milliohm (1 mΩ = 10^{−3} Ω), kilohm (1 kΩ = 10^{3} Ω), and megohm (1 MΩ = 10^{6} Ω) are also in common usage.
Professional Manufactur Custom Design Circuit Board Electronic Pcb |