Printing Technologies-Custom Design Circuit Board Electronic Pcb​

- Dec 30, 2016-

Printing technologies-Custom Design Circuit

Board Electronic Pcb

Printing technologies

The attraction of printing technology for the fabrication of electronics mainly results from the possibility of preparing stacks of micro-structured layers (and thereby thin-film devices) in a much simpler and cost-effective way compared to conventional electronics. Also, the ability to implement new or improved functionalities (e.g. mechanical flexibility) plays a role. The selection of the printing method used is determined by requirements concerning printed layers, by the properties of printed materials as well as economic and technical considerations of the final printed products.

Printing technologies divide between sheet-based and roll-to-roll-based approaches. Sheet-based inkjet and screen printing are best for low-volume, high-precision work. Gravure, offset and flexographic printing are more common for high-volume production, such as solar cells, reaching 10.000 square meters per hour (m²/h). While offset and flexographic printing are mainly used for inorganic and organic conductors (the latter also for dielectrics), gravure printing is especially suitable for quality-sensitive layers like organic semiconductors and semiconductor/dielectric-interfaces in transistors, due to high layer quality. If high resolution is needed, gravure is also suitable for inorganic and organic conductors. Organic field-effect transistors and integrated circuits can be prepared completely by means of mass-printing methods.

Inkjets are flexible and versatile, and can be set up with relatively low effort. However, inkjets offer lower throughput of around 100 m2/h and lower resolution (ca. 50 µm). It is well suited for low-viscosity, soluble materials like organic semiconductors. With high-viscosity materials, like organic dielectrics, and dispersed particles, like inorganic metal inks, difficulties due to nozzle clogging occur. Because ink is deposited via droplets, thickness and dispersion homogeneity is reduced. Using many nozzles simultaneously and pre-structuring the substrate allows improvements in productivity and resolution, respectively. However, in the latter case non-printing methods must be employed for the actual patterning step. Inkjet printing is preferable for organic semiconductors in organic field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs), but also OFETs completely prepared by this method have been demonstrated. Frontplanes and backplanes of OLED-displays, integrated circuits, organic photovoltaic cells (OPVCs) and other devices can be prepared with inkjets.

Professional Manufactur Custom Design Circuit Board Electronic Pcb

Previous:A-Printing Technologies-Custom Design Circuit Board Electronic Pcb​ Next:Resolution, Registration, Thickness, Holes, Materials-custom Pcb Design